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Summary. The complete diallel cross among homo- 
zygous lines can be a useful tool to analyze the genetic 
architecture of natural populations. However, it repre- 
sents the natural population only approximately, in par- 
ticular if the number of lines is small and the analyzed 
traits exhibit inbreeding depression or other forms of 
directional dominance. Some incorrect expected mean 
squares that can be found in the literature suggest tests 
for genetic variance components that can be misleading 
under such circumstances. Expected mean squares for a 
factorial analysis and for a modified Hayman analysis are 
presented and the effect of the number of lines and direc- 
tional dominance is discussed. 
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Introduction 

Diallel crossing schemes were introduced several decades 
ago for the genetic analysis of lines used for breeding 
purposes. More recently, they have also been used to 
analyze genetic variation in natural populations, because 
they provide much information on different sources of 
variation due to the large number of possible compari- 
sons among F:families (among lines, half sibs, full sibs, 
lines used either as paternal or maternal parent, etc.). This 
is especially true if the full diallel cross is used, which 
consists of the p2 possible matings among a set of p 
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parental lines. This note deals exclusively with the full 
dialM cross of inbred lines and some analyses that have 
been described (Wearden 1964; Walters and Gale 1977; 
Mather and Jinks 1982) and applied to the analysis of 
natural populations (Crusio et al. 1984). 

The advantage of so much information has a cost: the 
number of families to be raised in an experiment increases 
with the square of the number of parental lines, with the 
result that this number must often be small for practical 
reasons. Two problems can then arise: first, the sample of 
independent genotypes may not be representative of the 
natural population. Second, and this is the subject of the 
present note, statistical tests used in some published anal- 
yses can be misleading with few parental lines if inbreed- 
ing depression is important for the traits of interest. 

Model s  

From a theoretical point of view, the simplest situation is 
when the lines are completely homozygous. If the p l ines 

are representative for the gene frequencies in the popula- 
tion, the diallel table can be regarded as a table of gametic 
combinations, and it can be shown (disregarding environ- 
mental variance and reciprocal effects for the moment) 
that the total variance among family means equals V G 
(the genetic variance in the population), the variance 
among parental array means equals VA/2 (half the additive 
genetic variance in the population), and the interaction 
variance equals V D (the dominance variance) (Mather and 
Jinks 1982). 

A straightforward model reflecting this (allowing also 
for maternal effects) uses combining abilities of the 
parental lines (Wearden 1964): 

Yi j  = [A-l- gi  ~- gj-[- sij-}- mi  , 



where 
y~j = expectation of a cross between inbred line i as mother 

and line j as father; 
= t h e  mean of the population; 

g~ = the genetic effect of the i th  line (general combining 
ability); 

sgj = the interaction between the genetic contributions of 
parents i and j (specific combining ability); 

m s = the maternal contribution of the ith line. 

In the analysis of natural populations, all effects in 
this model, apart from the mean, are random, with vari- 
ances 0.2, 0.2, and 0.2 n. It can be shown that 20.2 = VA and 
0.2 = VD (Griffing 1956). Wearden (1964) summarizes sev- 
eral alternative ways to analyze the dialM by giving the 
expectations of a number of sums of squares in terms of 
the causal variance components defined in this model. 
Among the analyses that can be constructed from these 
sums of squares, the factorial and the Hayman  analyses 
are of interest here. For  the factorial analysis, where dams 
and sires are treated as main factors, the following expec- 
tations are given for the mean squares (for a single repli- 
cate in an experiment with error variance 0.2): 

2 M S  (sires): 0.2 _}_ 0.2 q _ p  0.0 ' 
2 MS (dams x sires): 0.2 + o_ s , 

corresponding to the relationships among cells in a table 
of gametic combinations mentioned above. Accordingly, 
the ratio of these two mean squares would test for addi- 
tive genetic variance in the population, analogous to the 
usual factorial design with interaction in stastistics. How- 
ever, dams and sires are not independent factors as in the 
usual situation, for their additive genetic contributions 
are the same, if they come from the same inbred line, and 
their genetic interactions are symmetrical, i.e., Sij=Sji. 
This caused inconsistencies in a study of the development 
of Drosophila larvae (M.D. Gebhardt  and S. C. Stearns, in 
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preparation) when the mean squares were calculated for 
both the factorial and the Hayman  analysis. The traits 
used were developmental time and weight at eclosion, 
both life history traits with low heritability, much domi- 
nance variance, and strong inbreeding depression in the 
homozygous lines. The most notable discrepancy was 
that the test for additive variance was much less frequent- 
ly significant in the factorial analysis than would be ex- 
pected from the differences among the inbred lines. 

Recalculating the expectations for the mean squares 
in the factorial analysis revealed that the test suggested by 
Wearden (1964) is only approximately correct, particular- 
ly when p is small. The coefficient of 0.2 in the expectation 
for the correction term in the sums of squares (item I in 
Wearden's Table 1) seems to have been calculated with- 
out considering the symmetry of the genetic interactions. 
Table I shows the correct expectations in the column for 
the coefficients of 0.s z, the variance due to dominance 
effects in this model. It can be seen that the MS(dams 
x sires) contains a greater contribution of dominance 

effects by an additional 0.s z / ( p -  1) than MS (sires). If dom- 
inance effects are large in comparison to additive effects 
and the number of lines is not large, it can make the test 
overly conservative. The effect of the number of lines can 
be analyzed further by calculating the expectations for 
the mean squares in the Hayman analysis. Usually, the 
b-item (testing for general dominance effects; Hayman 
1954) is subdivided into contributions due to mean direc- 
tional dominance (bl), dominance due to particular 
parental lines (b2), and dominance specific to each cross 
(b3). The sums of squares for these items have been red- 
erived by Walters and Gale (1977), based on a slightly 
different genetic model: 

yu = a + 2 g ~ +  mi, 

yij= a + 9 ~ + g j + d i j + m  i (for i a n d j  different), 

Table 1. Coefficients of causal variance components in two different genetic models for the expectations of mean squares in the 
factorial and Hayman analysis of the full diallel table with p parents, a 2, a 2, and a~ are components corresponding to parameters 
contained in the model given in Wearden (1964). ~ ,  12, a21, cr]ij, and a~correspond to parameters in the model used by Walters and 
Gale (1977) (definition of these models in the text) 

2 2 l 2 MS df % % G2i ~r2ij 0"7,, 

Factorial analysis: 

Dams p--I p ~- - l ) /p  0 (p--2)2/p (p--2)/p p 
Sires p -- 1 p (p - -  1 )/19 0 (p -- 2)e/p (p -- 2)/p 0 
Dams x sires (p--l)  2 0 (p--1)/p+t/(p--I)  1/(p--1) 4/p (p--1)/p+l/p(p--l)  0 

Hayman analysis: 

a p--1 2p 2(p--1)/p 0 2(p--2)2/p 2(p--2)/p p/2 
b p (p-1) /2  0 2(p-1)/p+2/p 2 2/p 8(p-1)/p 2 2(p-Z)/p+4/p 2 0 
bl 1 0 (p+ l)/p p - I  4(p-1) /p  2/p 0 
b2 p -  1 0 (p + 2)/p 0 4 (p - 2)/p 4/p 0 
b3 p(p-3) /2  0 2 0 0 2 0 
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where 
a = the  mean of the inbred lines; 
gl = the genetic effect of the i th line; 
dij = the dominance deviation; 
m i = the maternal contribution of the i t~ line. 

Dominance deviations are measured from the mid- 
parent value in this model and do not represent specific 
combining abilities. They can be subdivided as 

dij--l + li + Ij + llj , 

where I, l~, Iij correspond to the bl,  b2, and b3 items in 
the Hayman  analysis. Here, the dominance components 
l~ and l~j are assumed to be random variables in the 
population, with zero expectation and respective vari- 
ance ~ and a2j. Parameter l estimates a fixed effect and 
contributes to the variation among F 1 families by its 
square (Table 1). The expectations for the mean squares 
in the factorial and Hayman analyses under this model 
are given in Table 1. The a and b items in the Hayman 
analysis are identical to Griffing's (1956) general and 
specific combining abilities analyzed with Method 1 un- 
der Model II. 

Comparing the expectations for the mean squares 
under the two models leads to the following conclusions. 
Both MS(dams x sires) and MS(b) test for dominance 
effects in general. However, inbreeding depression (mean 
directional dominance, parameter l) will inflate the mean 
squares if p is small. This is also true for the dominance 
component  that is due to particular lines (parameter l~). 
If the number of lines is large, these contributions will be 
trivial and both mean squares (dams x sires and b) will 
test for the dominance variance in the population, V D. If 
the traits in the analysis do not exhibit directional domi- 
nance, then all subdivisions of b (bl, b2, and b3) test for 
V D in the population (seen in the column for a]). If  there 
is directional dominance, only the b3-item yields a valid 
test for V D. This is because dominance variation in an 
outcrossing natural population is not a function of in- 
breeding depression (the difference between the mean 
performances of homozygous and heterozygous indi- 
viduals), but of the specific interaction between different 
alleles at each locus. There are generally no completely 
homozygous individuals in a randomly breeding popula- 
tion. 

Another observation can be made if the subdivisions 
of b are compared. If one is interested in effects of inbreed- 
ing depression, then the bl- i tem is normally used to test 
for the difference between homozygous and heterozygous 
individuals. However, Table 1 shows that the mean 
square of bl  is inflated by variation in directional domi- 
nance among lines (li) as well as by (for small p) specific 
dominance effects (lij). Only approximate tests for mean 

directional dominance are possible with the items in the 
Hayman analysis: MS (bl) over MS (b2) for large p, or the 
test of MS (bl) over an appropriate error term if MS (b2) 
and MS (b3) are not significant. 

Conclusion 

Most of the above complications can be avoided if the 
selfs are not included in a diallel analysis of a natural 
population. This was also stated by Griffing (1956), who 
did not elaborate on the reasons for this, however. The 
progeny produced by a complete diallel scheme represent 
the original population accurately only if directional 
dominance is not important. In an outcrossing natural 
population, directional dominance is not important  for 
quantitative traits because individuals homozygous at all 
loci contributing to the trait do not occur. In contrast, the 
proport ion of homozygous families is considerable in a 
complete diaUel scheme, and the contribution of the dif- 
ference between the homozygous and the heterozygous 
families to the total variance may be substantial. The full 
diallel cross has been used in studies of genetic variation 
in natural populations, with the Hayman analysis often 
being applied (which allows inference on VD in the popu- 
lation if only b3 is used as a criterion), but also a factorial 
analysis as suggested by Wearden (1964). Depending on 
the nature of the traits (whether inbreeding depression is 
important  or not) and the number of lines used, this can 
lead to erroneous conclusions regarding the relative im- 
portance of genetic variance components. 
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